(function () {
function
f(a, b, d) {
if (a.addEventListener) a.addEventListener(b, d, !1);
else
if (a.attachEvent) a.attachEvent("on" + b, d);
else {
var
c = a["on" + b];
a["on" + b] = function () {
d.call(this);
c && c.call(this)
}
}
};
window.pagespeed = window.pagespeed || {};
var
g = window.pagespeed;
function
k(a) {
this.g = [];
this.f = 0;
this.h = !1;
this.j = a;
this.i = null;
this.l = 0;
this.b = !1;
this.a = 0
}
function
l(a, b) {
var
d = b.getAttribute("data-pagespeed-lazy-position");
if (d) return
parseInt(d, 0);
var
d = b.offsetTop, c = b.offsetParent;
c && (d += l(a, c));
d = Math.max(d, 0);
b.setAttribute("data-pagespeed-lazy-position", d);
return
d
}
function
m(a, b) {
var
d, c, e;
if (!a.b && (0 == b.offsetHeight || 0 == b.offsetWidth)) return !1;
a: if (b.currentStyle) c = b.currentStyle.position;
else {
if (document.defaultView && document.defaultView.getComputedStyle && (c = document.defaultView
.getComputedStyle(b, null))) {
c = c.getPropertyValue("position");
break
a
}
c = b.style && b.style.position ? b.style.position : ""
}
if ("relative" == c) return !0;
e = 0;
"number" == typeof
window.pageYOffset ? e = window.pageYOffset : document.body && document.body.scrollTop ? e = document.body
.scrollTop : document.documentElement &&
document.documentElement.scrollTop && (e = document.documentElement.scrollTop);
d = window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight;
c = e;
e += d;
var
h = b.getBoundingClientRect();
h ? (e = h.top - d, c = h.bottom) : (h = l(a, b), d = h + b.offsetHeight, e = h - e, c = d - c);
return
e
<=a.f&&0<=c+a.f} k.prototype.m=function(a){p(a);var b=this;window.setTimeout(function(){var
d=a.getAttribute("data-pagespeed-lazy-src");if(d)if((b.h||m(b,a))&&-1!=a.src.indexOf(b.j)){var
c=a.parentNode,e=a.nextSibling;c&&c.removeChild(a);a.c&&(a.getAttribute=a.c);a.removeAttribute("onload");a.tagName&&"IMG"==a.tagName&&g.CriticalImages&&f(a,"load",function(){g.CriticalImages.checkImageForCriticality(this);b.b&&(b.a--,b.a||g.CriticalImages.checkCriticalImages())});a.removeAttribute("data-pagespeed-lazy-src");a.removeAttribute("data-pagespeed-lazy-replaced-functions");
c&&c.insertBefore(a,e);if(c=a.getAttribute("data-pagespeed-lazy-srcset"))a.srcset=c,a.removeAttribute("data-pagespeed-lazy-srcset");a.src=d}else
b.g.push(a)},0)};k.prototype.loadIfVisibleAndMaybeBeacon=k.prototype.m;k.prototype.s=function(){this.h=!0;q(this)};k.prototype.loadAllImages=k.prototype.s;function
q(a){var b=a.g,d=b.length;a.g=[];for(var c=0;c
特性:
1). 8个窗口同时显示输出,输出特性,方便做数据对比分析
2). 输入电流测试频响1MHz,适合各类电子整流器高精度测试
3). 高速测试,1分钟内完成输入输出特性测试
4). 内置微处理芯片
5). 可打印输入,输出,启动参数/波形
6). 与电脑连接,配备中英文软件。软件可在WINDOWS3.2, WINDOWS95或WINDOWS98系统下运行,操作界面美观大方,易于操作
技术参数:
1) 输入特性测试
• 测试电压,电流,功率,功率因素,电网频率,总谐波和0-39次谐波分量
• 可打印数据和曲线
• 电压/电流基波频率范围:45Hz – 65Hz
• 窄频范围:45Hz – 5 kHz
• 宽频范围:45Hz – 1MHz
• 电压范围:10 – 300V(真有效值)
• 电流范围:10mA – 2A(真有效值)
• 功率范围:0 – 600W
• 功率因素范围:0.000 – 1.000
• 精度:0.5级
2) 输出特性测试
• 测试灯电压,灯电流,灯功率,灯丝功率,导入阴极电流,波峰因素,振动频率
• 可打印数据和曲线
• 灯电压范围:10 – 250V
• 灯电流,灯丝电流,导入阴极电流范围:10 – 800mA
• 灯功率范围:1 – 160W
• 精度:2级
3) 启动输出特性测试
• 测试预热时间,启动0-5分钟内灯电压,灯电流,灯丝电流,导入阴极电流和波峰数据和曲线
• 灯电压范围:10 – 800V
• 灯电流,灯丝电流和导入阴极电流范围: 10mA–2A.
• 精度: 2级